Files
animaltrack/tests/test_projection_event_log.py
Petru Paler bce4d099c9 feat: implement Event Log Projection & View (Step 8.2)
- Add migration 0008 for event_log_by_location table with cap trigger
- Create EventLogProjection for location-scoped event summaries
- Add GET /event-log route with location_id filtering
- Create event log templates with timeline styling
- Register EventLogProjection in eggs, feed, and move routes
- Cap events at 500 per location (trigger removes oldest)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-30 15:15:06 +00:00

455 lines
15 KiB
Python

# ABOUTME: Tests for EventLogProjection.
# ABOUTME: Validates event log entries are created for location-scoped events.
import json
from animaltrack.events.types import (
ANIMAL_COHORT_CREATED,
ANIMAL_MOVED,
FEED_GIVEN,
FEED_PURCHASED,
HATCH_RECORDED,
PRODUCT_COLLECTED,
PRODUCT_SOLD,
)
from animaltrack.models.events import Event
from animaltrack.projections.event_log import EventLogProjection
def make_product_collected_event(
event_id: str,
location_id: str,
animal_ids: list[str],
quantity: int = 5,
ts_utc: int = 1704067200000,
) -> Event:
"""Create a test ProductCollected event."""
return Event(
id=event_id,
type=PRODUCT_COLLECTED,
ts_utc=ts_utc,
actor="test_user",
entity_refs={
"location_id": location_id,
"animal_ids": animal_ids,
},
payload={
"location_id": location_id,
"product_code": "egg.duck",
"quantity": quantity,
"resolved_ids": animal_ids,
"notes": None,
},
version=1,
)
def make_cohort_event(
event_id: str,
location_id: str,
animal_ids: list[str],
species: str = "duck",
ts_utc: int = 1704067200000,
) -> Event:
"""Create a test AnimalCohortCreated event."""
return Event(
id=event_id,
type=ANIMAL_COHORT_CREATED,
ts_utc=ts_utc,
actor="test_user",
entity_refs={
"location_id": location_id,
"animal_ids": animal_ids,
},
payload={
"species": species,
"count": len(animal_ids),
"life_stage": "adult",
"sex": "unknown",
"location_id": location_id,
"origin": "purchased",
"notes": None,
},
version=1,
)
def make_feed_given_event(
event_id: str,
location_id: str,
feed_type_code: str = "layer",
amount_kg: int = 5,
ts_utc: int = 1704067200000,
) -> Event:
"""Create a test FeedGiven event."""
return Event(
id=event_id,
type=FEED_GIVEN,
ts_utc=ts_utc,
actor="test_user",
entity_refs={
"location_id": location_id,
},
payload={
"location_id": location_id,
"feed_type_code": feed_type_code,
"amount_kg": amount_kg,
"notes": None,
},
version=1,
)
def make_feed_purchased_event(
event_id: str,
ts_utc: int = 1704067200000,
) -> Event:
"""Create a test FeedPurchased event (no location)."""
return Event(
id=event_id,
type=FEED_PURCHASED,
ts_utc=ts_utc,
actor="test_user",
entity_refs={},
payload={
"feed_type_code": "layer",
"bag_size_kg": 20,
"bags_count": 1,
"bag_price_cents": 2500,
"vendor": None,
"notes": None,
},
version=1,
)
def make_product_sold_event(
event_id: str,
ts_utc: int = 1704067200000,
) -> Event:
"""Create a test ProductSold event (no location)."""
return Event(
id=event_id,
type=PRODUCT_SOLD,
ts_utc=ts_utc,
actor="test_user",
entity_refs={},
payload={
"product_code": "egg.duck",
"quantity": 30,
"total_price_cents": 900,
"buyer": None,
"notes": None,
},
version=1,
)
def make_animal_moved_event(
event_id: str,
to_location_id: str,
animal_ids: list[str],
ts_utc: int = 1704067200000,
) -> Event:
"""Create a test AnimalMoved event."""
return Event(
id=event_id,
type=ANIMAL_MOVED,
ts_utc=ts_utc,
actor="test_user",
entity_refs={
"to_location_id": to_location_id,
"animal_ids": animal_ids,
},
payload={
"to_location_id": to_location_id,
"resolved_ids": animal_ids,
"notes": None,
},
version=1,
)
def make_hatch_event(
event_id: str,
location_id: str,
hatched_live: int = 5,
ts_utc: int = 1704067200000,
) -> Event:
"""Create a test HatchRecorded event."""
return Event(
id=event_id,
type=HATCH_RECORDED,
ts_utc=ts_utc,
actor="test_user",
entity_refs={
"location_id": location_id,
},
payload={
"species": "duck",
"location_id": location_id,
"assigned_brood_location_id": None,
"hatched_live": hatched_live,
"notes": None,
},
version=1,
)
class TestEventLogProjectionEventTypes:
"""Tests for get_event_types method."""
def test_handles_product_collected(self, seeded_db):
"""Projection handles ProductCollected event type."""
projection = EventLogProjection(seeded_db)
assert PRODUCT_COLLECTED in projection.get_event_types()
def test_handles_animal_cohort_created(self, seeded_db):
"""Projection handles AnimalCohortCreated event type."""
projection = EventLogProjection(seeded_db)
assert ANIMAL_COHORT_CREATED in projection.get_event_types()
def test_handles_feed_given(self, seeded_db):
"""Projection handles FeedGiven event type."""
projection = EventLogProjection(seeded_db)
assert FEED_GIVEN in projection.get_event_types()
def test_handles_animal_moved(self, seeded_db):
"""Projection handles AnimalMoved event type."""
projection = EventLogProjection(seeded_db)
assert ANIMAL_MOVED in projection.get_event_types()
def test_handles_hatch_recorded(self, seeded_db):
"""Projection handles HatchRecorded event type."""
projection = EventLogProjection(seeded_db)
assert HATCH_RECORDED in projection.get_event_types()
def test_does_not_handle_feed_purchased(self, seeded_db):
"""Projection does not handle FeedPurchased (no location)."""
projection = EventLogProjection(seeded_db)
assert FEED_PURCHASED not in projection.get_event_types()
def test_does_not_handle_product_sold(self, seeded_db):
"""Projection does not handle ProductSold (no location)."""
projection = EventLogProjection(seeded_db)
assert PRODUCT_SOLD not in projection.get_event_types()
class TestEventLogProjectionApply:
"""Tests for apply()."""
def test_creates_event_log_entry_for_product_collected(self, seeded_db):
"""Apply creates event log entry for ProductCollected."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
animal_ids = ["01ARZ3NDEKTSV4RRFFQ69G5A01"]
projection = EventLogProjection(seeded_db)
event = make_product_collected_event(event_id, location_id, animal_ids, quantity=5)
projection.apply(event)
row = seeded_db.execute(
"SELECT event_id, location_id, type, actor FROM event_log_by_location"
).fetchone()
assert row[0] == event_id
assert row[1] == location_id
assert row[2] == PRODUCT_COLLECTED
assert row[3] == "test_user"
def test_event_log_summary_contains_relevant_info(self, seeded_db):
"""Event log summary contains relevant event info."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
animal_ids = ["01ARZ3NDEKTSV4RRFFQ69G5A01"]
projection = EventLogProjection(seeded_db)
event = make_product_collected_event(event_id, location_id, animal_ids, quantity=5)
projection.apply(event)
row = seeded_db.execute("SELECT summary FROM event_log_by_location").fetchone()
summary = json.loads(row[0])
assert summary["product_code"] == "egg.duck"
assert summary["quantity"] == 5
def test_creates_event_log_entry_for_cohort_created(self, seeded_db):
"""Apply creates event log entry for AnimalCohortCreated."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
animal_ids = ["01ARZ3NDEKTSV4RRFFQ69G5A01", "01ARZ3NDEKTSV4RRFFQ69G5A02"]
projection = EventLogProjection(seeded_db)
event = make_cohort_event(event_id, location_id, animal_ids, species="duck")
projection.apply(event)
row = seeded_db.execute("SELECT event_id, type FROM event_log_by_location").fetchone()
assert row[0] == event_id
assert row[1] == ANIMAL_COHORT_CREATED
def test_cohort_summary_contains_species_and_count(self, seeded_db):
"""Cohort event summary contains species and count."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
animal_ids = ["01ARZ3NDEKTSV4RRFFQ69G5A01", "01ARZ3NDEKTSV4RRFFQ69G5A02"]
projection = EventLogProjection(seeded_db)
event = make_cohort_event(event_id, location_id, animal_ids, species="goose")
projection.apply(event)
row = seeded_db.execute("SELECT summary FROM event_log_by_location").fetchone()
summary = json.loads(row[0])
assert summary["species"] == "goose"
assert summary["count"] == 2
def test_creates_event_log_entry_for_feed_given(self, seeded_db):
"""Apply creates event log entry for FeedGiven."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
projection = EventLogProjection(seeded_db)
event = make_feed_given_event(event_id, location_id, amount_kg=3)
projection.apply(event)
row = seeded_db.execute("SELECT event_id, type FROM event_log_by_location").fetchone()
assert row[0] == event_id
assert row[1] == FEED_GIVEN
def test_feed_given_summary_contains_amount(self, seeded_db):
"""FeedGiven event summary contains feed type and amount."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
projection = EventLogProjection(seeded_db)
event = make_feed_given_event(event_id, location_id, feed_type_code="grower", amount_kg=5)
projection.apply(event)
row = seeded_db.execute("SELECT summary FROM event_log_by_location").fetchone()
summary = json.loads(row[0])
assert summary["feed_type_code"] == "grower"
assert summary["amount_kg"] == 5
def test_creates_event_log_for_animal_moved(self, seeded_db):
"""Apply creates event log entry for AnimalMoved at destination."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 2'").fetchone()
to_location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
animal_ids = ["01ARZ3NDEKTSV4RRFFQ69G5A01"]
projection = EventLogProjection(seeded_db)
event = make_animal_moved_event(event_id, to_location_id, animal_ids)
projection.apply(event)
row = seeded_db.execute(
"SELECT event_id, location_id, type FROM event_log_by_location"
).fetchone()
assert row[0] == event_id
assert row[1] == to_location_id
assert row[2] == ANIMAL_MOVED
def test_creates_event_log_for_hatch_recorded(self, seeded_db):
"""Apply creates event log entry for HatchRecorded."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
projection = EventLogProjection(seeded_db)
event = make_hatch_event(event_id, location_id, hatched_live=8)
projection.apply(event)
row = seeded_db.execute("SELECT event_id, type FROM event_log_by_location").fetchone()
assert row[0] == event_id
assert row[1] == HATCH_RECORDED
def test_hatch_summary_contains_hatched_count(self, seeded_db):
"""HatchRecorded summary contains species and hatched count."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
projection = EventLogProjection(seeded_db)
event = make_hatch_event(event_id, location_id, hatched_live=8)
projection.apply(event)
row = seeded_db.execute("SELECT summary FROM event_log_by_location").fetchone()
summary = json.loads(row[0])
assert summary["species"] == "duck"
assert summary["hatched_live"] == 8
class TestEventLogProjectionRevert:
"""Tests for revert()."""
def test_removes_event_log_entry(self, seeded_db):
"""Revert removes the event log entry."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
event_id = "01ARZ3NDEKTSV4RRFFQ69G5001"
animal_ids = ["01ARZ3NDEKTSV4RRFFQ69G5A01"]
projection = EventLogProjection(seeded_db)
event = make_product_collected_event(event_id, location_id, animal_ids)
projection.apply(event)
# Verify row exists
count = seeded_db.execute("SELECT COUNT(*) FROM event_log_by_location").fetchone()[0]
assert count == 1
# Revert
projection.revert(event)
# Verify row removed
count = seeded_db.execute("SELECT COUNT(*) FROM event_log_by_location").fetchone()[0]
assert count == 0
def test_revert_only_affects_specific_event(self, seeded_db):
"""Revert only removes the specific event log entry."""
row = seeded_db.execute("SELECT id FROM locations WHERE name = 'Strip 1'").fetchone()
location_id = row[0]
projection = EventLogProjection(seeded_db)
# Create first event
event1 = make_product_collected_event(
"01ARZ3NDEKTSV4RRFFQ69G5001",
location_id,
["01ARZ3NDEKTSV4RRFFQ69G5A01"],
)
projection.apply(event1)
# Create second event
event2 = make_feed_given_event(
"01ARZ3NDEKTSV4RRFFQ69G5002",
location_id,
ts_utc=1704067300000,
)
projection.apply(event2)
# Verify both exist
count = seeded_db.execute("SELECT COUNT(*) FROM event_log_by_location").fetchone()[0]
assert count == 2
# Revert only event1
projection.revert(event1)
# Event2 should still exist
count = seeded_db.execute("SELECT COUNT(*) FROM event_log_by_location").fetchone()[0]
assert count == 1
row = seeded_db.execute("SELECT event_id FROM event_log_by_location").fetchone()
assert row[0] == "01ARZ3NDEKTSV4RRFFQ69G5002"